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Random Walk in an Inhomogeneous Medium 
with Local Impurities 
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In spite of Sinai's result that the decay of the velocity autocorrelation function 
for a random walk on ga (d = 2) can drastically change if local impurities are 
present, it is shown that local impurities can not abolish weak convergence to 
the Brownian motion if d > 2. 
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1. INTRODUCTION 

It has been observed recently that local impurities situated in a bounded 
domain can radically change the decay of the velocity autocorrelation 
function of a random walk. (~) For dimensions 1 and 2, this phenomenon 
can be explained heuristically by P61ya's theorem on the recurrence of the 
random walk, that can cause a long memory in the velocity autocorrelation 
function. The aim of the present paper is to prove that in dimension 2 local 
--possibly random impurities do not influence the weak convergence of 
the random walk to the Brownian motion. The same is true in higher 
dimensions, too, while on the other hand a simple example is given showing 
that, on the line, the presence of as few as one impurity spoils the Brownian 
character of the weak limit. 

If the impurities are not restricted to a finite domain, then the limit 
process, even if it happens to be a Brownian one, is expected to have a 
different covariance matrix. Convergence to the Brownian motion is only 
proven in a quite simple case: the impurities are deterministic and periodi- 
cally situated. 
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The results are formulated in Section 2, and they are proved in Section 
4. Section 3 contains some notations and lemmas used in Section 4 while 
some of the later ones are proved in the Appendix. Section 5 is devoted to 
comments. 

2. RESULTS 

First of all we define the simple symmetric random walk on Z d, the 
d-dimensional integer lattice. 

Definition 1. Let y~, Y2 . . . .  be i.i.d. (independent, identically dis- 
tributed) random variables 

1 f E N ,  j =  1,2, , d  Prob(yl  = + 3 ) -  2d . . . .  

where the ej is the j th  unit vector. The stochastic process Yo, Y1 . . . .  
defined by 

~ q  

Y. = Yo + ~,  Yi 
i=1 

where Y0 = z ~ Z d, is called a simple symmetric random walk (SSRW). The 
measure defined by this random walk will be denoted by Pz and the 
transition probabilities of the process will be denoted by P(x, y). 

It is well known that the continuous time stochastic process v/.(t) 
= n-I/2Y[,ti ,  t E[O, 1] converges, as n--> oo, weakly to W(t),  the d- 
dimensional standard Wiener process, in the space Cd[O, ~ ) .  Weak conver- 
gence in Cd[O, oo) will be denoted by 3 .  

Definition 2. Let P be a transition probability matrix on Z d such that 
P(x,  y ) =  0 if I x - y l  4: 1. We call the Markov process X i, i = O, 1 . . . .  
with transition probabilities P a simple random walk in an inhomogeneous 
medium. 

Definition 3. If X n is a simple random walk in an inhomogeneous 
medium and there exists a finite set A c Z d such that for all u f~ A, v E Z d, 
P(u, v) =_P(u, v), then we call Xn a simple, symmetric random walk with local 
impurities. (Abbreviated as R.W.w.L.I.) 

Theorem 1. Let X, be a R.W.w.L.I., where the starting point z lies in 
the infinite, strongly connected component Q of the graph G = (Zd, E), 
where E = ( (u ,v ) IP(u ,v)4=O).  If d /> 2 and U,(t) = n-1/2X[~t], t ~[0,  1] 
then, as n ~ 0% 

U.(t)~W(t), t E[O, 1 l 

Remark.  If d = 1, this theorem is not true. This is shown by the 
following example. 
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Example. Let A ={~3} and P ( � 9 1 6 9  p ~ ( 0 , 1 ) .  
Let p(x)  be the following function defined on Z: 

{ i  ~ if x > 0 
p ( x ) =  l - p )  i f x < O  

i f x  = 0 

The process U.(t), in our example, converges weakly to a process ~,(t), 
whose one-dimensional density is equal top(x)wl( t ,  x), where wl(t, x) is the 
corresponding density of the Wiener process. This statement can be easily 
proved by using the following equations: 

Po(X,, =y ,  Xi=/=O, 1 < i <  n) =p(y )Po(Y , ,  = y ,  Y i~O,  1 <<. i < n) 

Po(X. = O) = P_o( Y. = O) 

and 

eo(X, = y)  = p ( y )  P_o( Yn = Y) 

The finite-dimensional densities of ~(t) can also be calculated by using the 
well-known reflection principle. 

If X n is a R.W.w.L.I. and the impurities are contained in a finite set A, 
then a similar statement is true. The only difference is that the limit process 
is determined by the probabilities 

P(X~ = a I - 1 I X o = aj), P(X~ = a 2 + 1 I X o = al) 

P ( X ~ = a  l -  1 IX 0=a2 ) ,  P ( X ~ = a  2+ l IX 0 = a 2 )  

where a 1 = min{z E A),  a 2 = max{z ~ A} and ~ = min{k E NIX k ~ A} is 
the first exit time from the set A. 

OefinRion 4. Let Z,  be a finite Markov chain on a finite set S. Let 
h : S---> ~d be an arbitrary function. For simplicity we assume that S is the 
unique essential class of the Markov chain. If X 0 ~ Ra and X n = X 0 + 
~"i= lh(Zi), then we call X, a random walk directed by the Markov chain Z,. 

Proposition 2, If .!(. is as in Definition 4, then there exists an 
M E R d, a covariance matrix Y~ such that for the processes 

V.(t) = n- ' /2 (X[n t t -  [n t ]M) ,  t ~ [ O ,  I] 

we have, as n ~ oo, 

V, ( t ) ~W y . ( t ) ,  t E I0 ,1  ] 

where by W~(t) we denote the Wiener process with zero expectation and 
covariance matrix E. 

D e f i n i U o n  5. Let G be a subgroup of 77 d of finite index and denote 
by A = Y / G  its fundamental parallelepiped. Suppose that P is an A- 
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periodic transition probability matrix on 7J, i.e., P(x,  y ) =  P(u,v), when- 
ever x ~ u (modA) and x - u = y  - v. 

If X n is a simple random walk in an inhomogeneous medium and its 
transition probability matrix is A-periodic, then we call X n a simple random 
walk in a periodic medium. 

It  is clear that the modA factorization of X n generates a finite Markov 
chain ~n on A and X n is directed by fn. So we get 

Corollary 3. If X n is a simple random walk on ~d (d/> 1) in a 
periodic medium, and X 0 = z E 7/d is arbitrary, then there exists an M ~ R d 
and a covariance matrix E such that, if Zn(t ) = n-1/2(Xint]- [nt]M) then, 
a s  t/---) (x), 

Z n ( t ) ~ W ~ ( t ) ,  t E [ 0 , 1 1  

3. PRELIMINARY NOTES TO THE PROOF OF THEOREM 1 

Before the exact discussion we want to show the idea of the result. If 
d >/3, then P61ya's theorem (3) says that with probability 1 the number  of 
returns into the origin and into a finite set A as well is finite. Therefore in 
case of a finite modification the random walk leaves the set A after a finite 
time. Thus, in the limit, the effect of the modification vanishes. In the case 

d = 2, the expected number  of returns into a finite set until time n is o(v~).  
The expected time spent in A during one visit is bounded and since the 
normalizing factor is of order f~ ,  the previous conclusion is also true. 

If the impurities are local, then there exists an N ~ ~ such that all the 
impurities lie in the cube 

K N = [ - N - � 8 9 1 8 9  d, i.e., A C K  u 

Definition 6. 

0, = ~ a(:V. O) 
/ = 0  

(where 8 is the Kronecker symbol), i.e., 0 n is the number  of visits to the 
origin in the first n steps of the simple symmetric random walk. 

Definition 7. For all z E K N A Q consider a R.W.w.L.I. such that 
X 0 = z. Denote 

~z = min{k  ~ [ X  k C1~ K N ) 

i.e., % is the first exit time of the R.W.w.L.I. f rom the set K N. 
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Definition 8. 

Pn = ~ XXiEK N 
i = 0  

the time spent by the R.W.w.L.I. in K u until time n. 

Definition 9. Denote by p, the number of pure 1 blocks in the 
sequence 

XXoGKN,  XX ,  ~KN,  " . . , X x . ~ K  N 

i.e., t,, is the number of entrances into K N until time n. 

Definition 10. Denote by B C Q a finite simply connected set, i.e., 
for all x, y E Q \ B  there is a directed path from x to y in the subgraph on 
Q k B. Let 

S B = min{k  E t~ IX  k E B )  

and 

TB = min{k  r NI Y k E B }  

These are called hitting times of B by the processes X n and Yn, respectively. 

Le m ma  4. For all z E Q \ B  the following limit exists: 

Pz(TB > n) 
0 < lim < cr 

Po(T(o } > n) 

This is a variant of the Kesten-Spitzer ratio limit theorem. O) 
We shall denote by Ez (and E~) expectations with respect to P~ (and 

__P~). To prove Theorem 1 we need the following lemmas: 

Lemma5. I f d > 2 ,  then, a s n ~ ,  

Let, fo rA c Z a, 0A = {x CA ]3y E ZakA : I x - y ]  = 1}. 

Lemma 6. If d > 2 and there exists a b E ~(ZdXKN) Such that for all 
x E K N, y ~ Y_dXKNP(X, y) = 0 if y =~ b, then for all z ~ 77 a 

1 Ez (p,) < 

Corollary 7. If d/> 2 then, as n ~ m ,  Ez(u,) = o(~/n). 

L e m m a S .  I f d > / 2 ,  z ~ Q ,  then, a sn - -~m,  

= 
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4. PROOF OF THE RESULTS 

Proof  of  Theorem 1. With the help of X. we define a new process 
U.. Let U o = z and U. + 1 - U~ = X~ + l - Xn if X n ~ K N, while if Xn ~ K N, 
then let U . + I -  U. be independent of X o , X  1 . . . .  , X . , . . .  and of U o, 
Ui, . . . ,  U., and let P(U. ,  (.7.+ 0 =_P(U., U.+I). 

It is clear that Un is a simple symmetric random walk. 
Since X. spends time p. in K~ until time n 

I x .  - X o -  < 

From Lemma 8 we get that 

E( sup p[,.]) = o(~/n) 
0 < t < l  

and by the Markov inequality it follows that 

n-1/2 sup IX[.tl - U[nt] ] 
0 < t < l  

tends to zero in probability if n ---> oo. 
Thus the weak convergence of the normalized SSRW to the Wiener 

process implies the statement of our theorem. [] 

P r o o f  o f  P r o p o s i t i o n  2. It is enough to refer to Theorem 20.1 and 
Example 2 in Ref. 4. X. is a function of a finite Markov chain and 
consequently X. is exponentially mixing. By Theorem 20.1 and by the 
Cramer-Wold device we get the statement. [] 

5. COMMENTS 

It is easy to see that Theorem 1 also implies a generalization to random 
walks X n in uniformly local random media when a bounded set A C E d and 
a measurable o algebra ~- is given such that (i) conditioned with respect to 
oy the random walk is a simple, symmetric random walk with local impuri- 
ties; and (ii) the impurities lie in A with probability 1. For such random 
walks the statement of Theorem 1 is true if---for the sake of simplicity--we 
suppose the X o = z E Z d \ A .  The velocity autocorrelation function of Xn 
has been obtained by Ya. G. Sinai (private communication). 

If the random impurities are not local, then the non-Markovian 
character of the process makes it hard to handle. There exist several, more 
or less related models and, to our knowledge, even simple questions--like 
the existence of a positive diffusion constant--are not answered for any of 
them, except for Sinai's recent result for a one-dimensional model. (5) We 
can call a discrete-time stochastic process on 7/a a simple random walk in a 
random medium if for a suitably chosen o algebra ~ the process condi- 
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tioned with respect to 69- is a simple random walk. In Sinai's model the 
random transition probabilities are determined by a constant c (0 < e 
< 1/2d)  and by a Bernoulli sequence of random variables ~x,l (x ~ Z d, 1 

l < d )  taking on the values - 1  or +1 in such a way that for every 
x ~ Z d a n d  1 < l < d  

P ( x , x  +- e , l~  ) -- 1 / 2 d  +_ - e~x, z 

where ~ is the o algebra spanned by the ~x,z's. Another model has been 
proposed by Spohn (see Ref. 2): cancel the points of g d independently of 
each other with probability P, if P is small, then with positive probability 
there exists an infinite connected component Q of the noncanceled points, 
and on this random component a simple random walk will be defined by 
saying that the particle chooses any of its Q-neighbors with equal probabili- 
ties. We do not know of any results concerning this model. 

To treat recurrence properties of random walks in random media the 
present authors introduced the following model: to every edge E = ((i, j )  
l i, j ~ 2U, ] i - j [  = 1) of the unoriented lattice graph, we define indepen- 

dent, identically distributed random variables a E and then 

e ( i ,  j l  ~3 ) = a(i, j )  ~k :lk~i[=l a(i'k) 

where ~ is generated by the ae's. 
We return to the discussion of our results in a forthcoming paper. 

A C K N O W L E D G M E N T  

The authors express their gratitude to L. A. Bunimovich for making 
many useful remarks. 

APPENDIX. (PROOF OF THE LEMMAS) 

Proof of Lemma 5. 

If d = 2, then _.Eo(0. )~(1/~r) logn 

(See Ref. 3, p. 200.) 

(1) 

If d >1 3, then _EE0(0 n ) ~  C a < oo (2) 

We note that, if d = 1, then E0(0,)~(2/~r)fn.  [] 

Proof of l.emma 6. We define a complete system of events Ai, 
i = 0 , 1  . . . .  ,n :  

A i = ( X  i = b and Xj ~ K N for i < j  < n) 
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Then 

1 =  k P . (Ai )=  k P~(Xi = b)Pb(SK~ > n - i) 
i = 0  i = 0  

>/ Pb(SKN > n) .  E(Pn) since E(v.) < k Pz(Xi = b) 
i = 0  

and we get that 
1 

Let us notice that the probability Pb(SKN > n) is independent of the 
transition probabilities inside KN; consequently 

P__b( TK N > n ) =  Pb( SKu > n) 

which is the statement. �9 

Proof  of  Corollary 7. It is known that, if d = 2, (see Ref. 3, p. 199), 

e0(z{ o } > n)--~ lo~ n (3) 

and, if d > 3, then 

lim Pb( T K > n) > 0 
n --)" ~ \ N 

From (1)-(4) and Lemmas 4 and 6 it follows that 

E~(rn) Po(T{o} > n) 
lim - -  < lim _&(o.) _eb(T, ,v > ,,) 

(4) 

<oo  �9 

It is clear that Lemma 6 and its Corollary 7 remain true if we drop the 
condition that for x E KN, y ~ ~_aP(x, y) = 0 if Ix - Yl ~= 1. We will use this 
fact in the proof of Lemma 8. 

Proof  of  Lemma 8. Let ~/i-1 be the time spent by X n outside K N 
between the ( i -  1)th and the ith visit to K u. It is the length of the ith 
0-block in the sequence XXo~KN, Xx, EKN' " " " " Let ~i-l be the time spent by 
Xn in K u i.e., the length of the ith 1-block. 

Let % = 0 if X o E K u. From Definition 9, 

v ~ = m i n {  k EN I  k ~i + ~i > n 

v~ is, of course, a Markov stopping time with respect to 

We shall construct a new R.W.w.L.I. Z~. Later for Z n we shall also 
define certain random variables ~n,{n, n = 0, 1 . . . . .  and the following 



Random Walk in an Inhomogeneous Medium with Local Impurities 535 

random variables will make sense: 

~ = m i n  k E N  I ~ , ~ i + ~ i > n  
i = 0  

and 

~n 

i = 0  

~i and ~i will be defined to satisfy the inequalities (~ < ~ and Bs > ~i for 
i = O, 1 . . . .  and as a consequence we obtain 

The random variables ~i and ~/i, i = O, I . . . . .  will be totally independent 
with the ~i's (and the ~?i's), respectively, identically distributed. ~ will be a 
Markov stopping time with respect to the sequence of o algebras a(~0, 
~i . . . .  , ~i,~0,~, . . . . .  ~/i)--~i and from the construction it will be clear 
that E(~,) < ~. 

Then by the Wald identity 

Ez(pn ) < E ( b . )  = E ( ~ , ) E ( P , ) .  ( , )  

Finally, if we apply Corollary 7 to the process Z.,  we have 

E(~.)  = o ( f n )  as n---> ~ 

and thus the previous inequality gives the statement of the lemma. 
Let us define Z n. 

DefinlUon: b ,  Let us denote the elements of OK N by b~, b 2 . . . . .  bq, 
where q = [OKNI. 

Definition: M. M > 2 N, M E N. 

Definition: K (i) . We take q disjoint, identical copies of the set K N. 
These sets will be denoted by K (~), K (2) . . . . .  g (q) . 

Definition: b (0. In each K (0 there is a point corresponding to b i 
which will be denoted by b (0. Thus b (0 E OK (i) , the subset of K (i) 
corresponding to OK u. 

Definition: X (0. If X E K  N then for every i =  1 . . . . .  q we shall 
denote by X (i) the element of K (0 corresponding to X. 

Next we define a random walk on the state space 
q 

I = U K(O LJ ( 7 / d \ K M )  
i = 1  
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\ 

/ % 

Fig. 1. 

y = 

For  

Definition: P. 
O) P(x, y) =P(x, y) 
(2) P(x,  y) = P(u,v) 
v ( i )  ; 

1 
(3) f i (x ,b (0) - 2d 
i = 1 , 2  . . . . .  q - 1  

if x, y E Zd\KM; 
if for some i E (1 . . . . .  q) x = u (i), 

if x E O()Td\Km); 

(4i) p(x ,b  (i+O) = ~ P(u,e) if x = u (0 
u , v  : v $ K l v  
l u- vl = l 

with u ~ O KN; 
Let b -- (M + 1)e I E O(ZU\KM) be the center of a side of KM+]/2. 

(5) P ( x , b ) - -  ~,, P(u,v)  if x ~ 0K (q) and  u (q) = x. 
u,v : v ~ K n  

1,-~1=1 

(6) All the remaining transition probabilities are equal to zero. We 
illustrate the graph of f i  in Fig. 1 for q = 2. The  arrows show the possible 
steps between K (i) and K (i+ 1) or K (q) and Zd\Km. 

Defini t ion:  Z, .  Let  Z 0 = b and let us consider the R.W.w.L.I.  to be 
generated by P. 

Definition: a) 0, ~j,~j, Y1/. Let  a~O(j >1 O, 1 < i < q) be the time of the 
j t h  visit of Z ,  at the point  b (0 (a(0 l) := 0) and f j  be the time of t h e j t h  visit 
of Z ,  at the point  b. Clearly ar ;) < a f  + 1) < f ,  < a)~_)l for  every j and 
1 < i < q -  1. Denote  ~j = f j -  ~(') and ~7/= a)+151- fly, ( j  >/0). 

Next  we redefine X,,  i.e., by the help of Z ,  we determine a r andom 
walk 'X~ which has the prescribed transition probabilities P. For  the 
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simplicity of exposit ion we suppose X 0 = b]. In  other  cases the proof  can be 
easily modified.  

Definition: 7i, Si, Oj ,~ ,~ j .  For  the r a n d o m  walk X,  to be  def ined we 
denote  by  -/) and  8j (y />  0) the t ime of t h e j t h  ent rance  into the set K M and  
~-d\K M, respectively (Y0 = 0). Set, moreover ,  Oj = Xvs(O o = bl), ~ = 6j - ~ ,  

= r j + ,  - 

Definition: X. .  In  the t ime intervals [7/, 8j) the definit ion of X.  is 
very simple: since X v = b i for some i ~ {1 . . . .  , q} we jus t  set X,  = 
Z~(i)+,_ v if yj < n < 6if and  6J is of course y, + a. (i+l) - a(, i) if 1 ~< i < q - 
1 ~and e~uals 3'j + f l j + l -  a) q) if i =  q. By definit ion J(ss ~ OK (i). By a 
unique Euclidian t rans format ion  q~ of 7 / w e  can  reach that  ~p(Mel) = X~ - 
1 and ep(K~t) D K N. Then  X~ = ep(Z~+,_~j) if 6j < n < 8j.. + a)  1)] - flj. ~By 
definit ion Z~,+ i E O(Y_d\KM) and  we can  now take a simple, symmetr ic  
r a n d o m  wall(Vj(0),  V/(1) . . . .  s tart ing f rom the point  Z~),+~_~ and  indepen-  

dent  of Z ,  and  of X 0, X l . . . . .  X~. We  can take this r a n d o m  walk until the 

first t ime rj when cp(Vj(rj)) E aK N. Then  we put  yj+] -- 6y + a)+l)] _ flj + Kj 
and  we define X,  = q0(Vj(n - 6j - a)l)  1 + flj)) whenever  8j + t~(1) I - -  ~j < n 
< Kj. N o w  clearly Xvj+~ = b i for some i and  the definit ion of X,  can be 
continued.  

It  is easy to see that  the distr ibution of t h e  process def ined above  
coincides with the distr ibution of the original process and  also that  Z n 
satisfies all the propert ies  stated before  ( .) .  []  

NOTE A D D E D  IN P R O O F  

After  this pape r  had  been submit ted,  there appeared  a work  by  J. M. 
Har r i son  and  L. A. Shapp  which investigated in detail the example  of 
Section 2 (On Skew Brownian Motion,  Annals of Probability 2:309-313 
(1981)). 
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